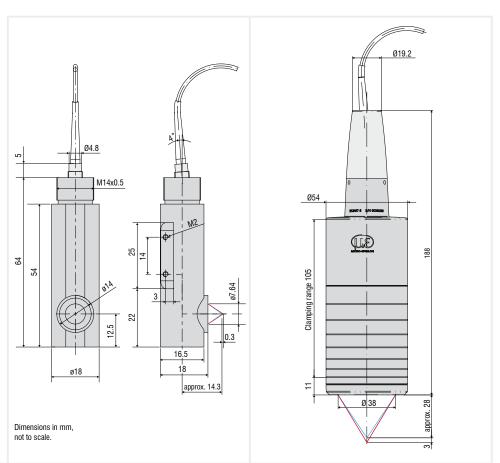

More Precision.

confocalDT // Confocal chromatic sensor system

High precision sensors for displacement and thickness measurements confocalDT IFS2407

Measuring range0.1 mm0.1 mm0.8 mmStart of measuring rangeapprox.1 mm1 mm5.9 mmResolutionstatic 1 3 nm3 nm24 nmResolutiondynamic 2 6 nm6 nm75 nmDisplacement and distance $< \pm 0.05 \mu m$ $< \pm 0.05 \mu m$ $< \pm 0.2 \mu m$ Linearity 3 Thickness $< \pm 0.1 \mu m$ $< \pm 0.1 \mu m$ $< \pm 0.4 \mu m$ Light spot diameter3 μm 4 μm 6 μm	m m m ! μm		
Resolution static ¹) 3 nm 3 nm 24 nm dynamic ²) 6 nm 6 nm 6 nm 75 nm Linearity ³) Displacement and distance $< \pm 0.05 \mu m$ $< \pm 0.05 \mu m$ $< \pm 0.2 \mu m$ Linearity ³) Thickness $< \pm 0.1 \mu m$ $< \pm 0.1 \mu m$ $< \pm 0.4 \mu m$	m m : μm		
Resolution dynamic 2 6 nm 6 nm 75 nm 2 Displacement and distance $<\pm0.05\mu\mathrm{m}$ $<\pm0.05\mu\mathrm{m}$ $<\pm0.2$ Thickness $<\pm0.1\mu\mathrm{m}$ $<\pm0.1\mu\mathrm{m}$	m ? μm		
$\frac{\text{dynamic}^{2)}}{\text{Displacement and distance}} \frac{6 \text{ nm}}{6 \text{ nm}} \frac{6 \text{ nm}}{75 \text{ nm}}$ $\frac{\text{Displacement and distance}}{\text{Linearity}^{3)}} \frac{< \pm 0.05 \mu\text{m}}{5 \text{ cm}} = \frac{< \pm 0.05 \mu\text{m}}{6 \text{ nm}} + < \pm 0$! μm		
Linearity $^{3)}$ Thickness $<\pm0.1\mu\mathrm{m}$ $<\pm0.1\mu\mathrm{m}$ $<\pm0.4$	•		
Thickness $< \pm 0.1 \mu \text{m}$ $< \pm 0.1 \mu \text{m}$ $< \pm 0.4$	μ m		
Light spot diameter $3 \mu \mathrm{m}$ $4 \mu \mathrm{m}$ $6 \mu \mathrm{m}$			
	ı		
Max. measuring angle $^{4)}$ $\pm 48^{\circ}$ $\pm 48^{\circ}$ $\pm 30^{\circ}$	0		
Numerical aperture (NA) 0.80 0.70 0.50)		
Min. target thickness ⁵⁾ 0.005 mm 0.005 mm 0.004 m	nm		
Connector pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm; dynamic 40 mm	pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm; dynamic 40 mm		
Mounting Clamping, mounting adapter (see accessories)	Clamping, mounting adapter (see accessories)		
Storage -20 +70 °C			
Operation +5 +70 °C	+5 +70 °C		
Shock (DIN EN 60068-2-27) $15\ g\ /\ 6\ ms\ in\ XY\ axis,\ 1000\ shocks\ each$	15 g / 6 ms in XY axis, 1000 shocks each		
Vibration (DIN EN 60068-2-6) 2 g / 20 500 Hz in XY axis, 10 cycles each	2 g / 20 500 Hz in XY axis, 10 cycles each		
Protection class (DIN EN 60529) IP65 (front)	IP65 (front)		
Material Stainless steel housing, glass lenses	Stainless steel housing, glass lenses		
Weight ⁶⁾ approx. 36 g approx. 36 g approx.	40 g		
Special features Sensor with high numerical aperture Light-intensive sensor -			

¹⁾ Average from 512 values at 1 kHz, near to the mid of the measuring range onto optical flat


² RMS noise relates to mid of measuring range (1 kHz)

3 All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.

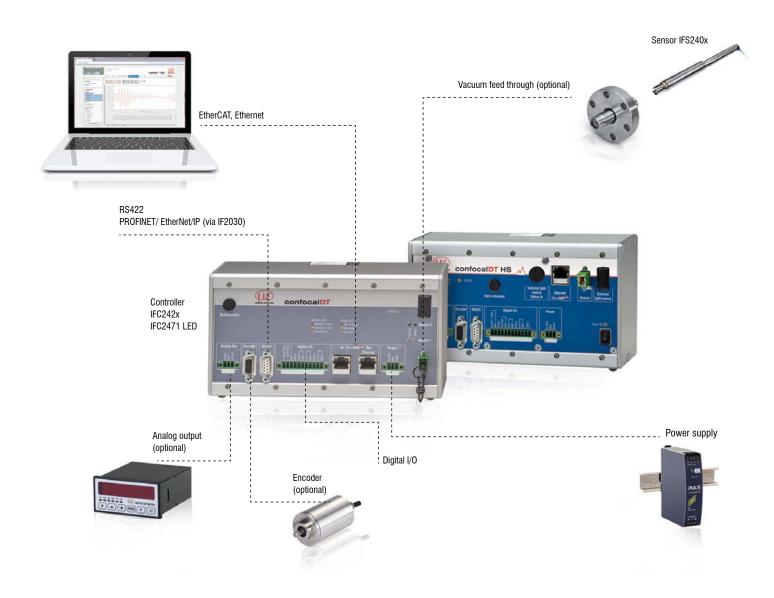
4 Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.

5 Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.

⁶⁾ Sensor weight without optical fiber

Model		IFS2407/90-0,3	IFS2407-3	
Measuring range		0.3 mm	3 mm	
Start of measuring rang	ge approx.	5.3 mm	28 mm	
Resolution	static 1)	6 nm	13 nm	
	dynamic 2)	20 nm	63 nm	
Linearity 3)	isplacement and distance	$< \pm 0.15 \mu {\rm m}$	$<\pm0.5\mu\mathrm{m}$	
Lineality /	Thickness	$<\pm0.3\mu\mathrm{m}$	< ±1 μm	
Light spot diameter		6 μm	9 μm	
Max. measuring angle 4)		±27°	±30°	
Numerical aperture (NA)		0.50	0.53	
Min. target thickness 5)		0.015 mm	0.15 mm	
Connector		pluggable optical fiber via FC socket, type C2407-x; standard length 3 m; extension up to 50 m; bending radius: static 30 mm, dynamic 40 mm	pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm, dynamic 40 mm	
Mounting		Mounting holes (2x M2)	Clamping, mounting adapter (see accessories)	
Temperature range	Storage	-20 +70 °C		
	Operation	+5 +70 ℃		
Shock (DIN EN 60068-2-27)		15 g / 6 ms in XY axis	15 g / 6 ms in XY axis, 1000 shocks each	
Vibration (DIN EN 6006	8-2-6)	2 g / 20 500 Hz in XY axis, 10 cycles each		
Protection class (DIN EN 60529)		IP65 (front)		
Material		Stainless steel housing, glass lenses	Aluminum housing, glass lenses	
Weight ⁶⁾		approx. 30 g	approx. 550 g	

 $^{^{\}scriptsize 1)}$ Average from 512 values at 1 kHz, near to the mid of the measuring range onto optical flat


Average from \$12 values at TkP2, freat to the find of the friedsuming range only optical flat
 PMS noise relates to mid of measuring range (1 kHz)
 All data at constant ambient temperature (25 ± 1 °C) against optical flat; specifications can change when measuring different objects.
 Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.
 Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.
 Sensor weight without optical fiber

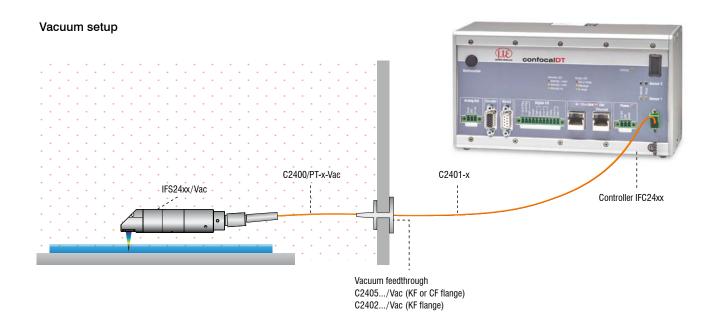
System design

confocalDT

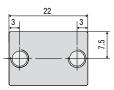
The confocalDT system consists of:

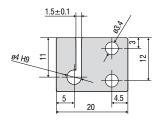
- Sensor IFS240x
- Controller IFC24xx
- Fiber optic cable C24xx

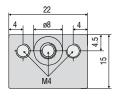
Customer-specific modifications


Application examples are often found where the standard versions of the sensors and the controllers are performing at their limits. To facilitate such special tasks, it is possible to customize the sensor design and to adjust the controller accordingly. Common requests for modifications include changes in design, mounting options, customized cable lengths and modified measuring ranges.

Possible modifications

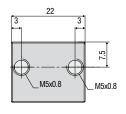

- Sensors with connector
- Cable length
- Vacuum suitability up to UHV
- Specific lengths
- Customer-specific mounting options
- Optical filter for ambient light compensation
- Housing material
- Measuring range / Offset distance

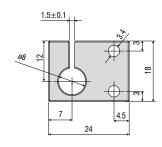


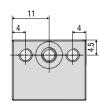

Accessories

confocalDT

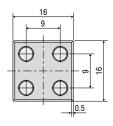
Accessories: mounting adapter MA2402 for sensors 2402

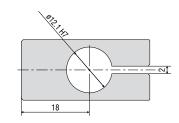


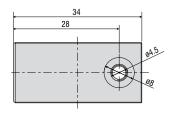




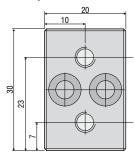
Accessories: mounting adapter

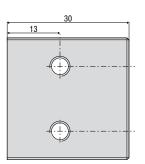

MA2403 for sensors 2403

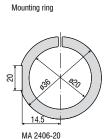




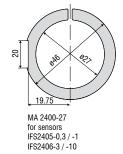
Accessories: mounting adapter MA2404-12 for sensors IFS2404-2 / IFS2404/90-2 / IFS2407-0,1

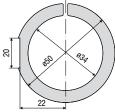


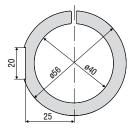



Accessories: mounting adapter

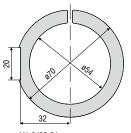
MA2400 for sensors IFS2405 / IFS2406 / IFS2407 (consisting of a mounting block and a mounting ring)


Mounting block



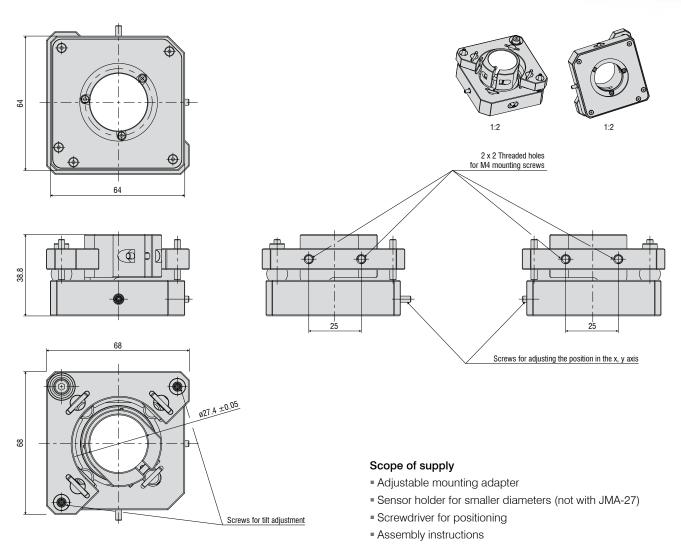


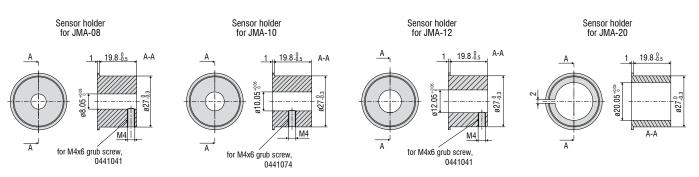
MA 2406-20 for sensors IFS2406-2,5 IFS2406/90-2,5



MA 2405-34 for sensors IFS2405-3

MA 2405-40 for sensors IFS 2405-6


MA 2405-54 for sensors IFS2405-10 / IFS2407-3


Adjustable mounting adapter

The adjustable JMA mounting adapter simplifies the alignment and fine adjustment of confocal sensors. You can integrate the sensors with the adapter directly into the machine and then align them directly on site. This corrects, e.g, minor deviations caused by mounting and compensates for tilted measuring objects. With two-sided thickness measurements, the mounting adapter supports the fine alignment of the two measuring points.

Sensor holder for smaller diameters

Accessories confocal DT

Software

IFD24xx-Tool Software demo tool included

Accessories light source

IFL2422/LED Lamp module for IFC2422 and IFC2466

IFL24x1/LED Lamp module for IFC2421, IFC2465 and IFC2471

Cable extension for sensors

CE2402 cable with 2x E2000/APC connectors

CE2402-x Extension for optical fiber (3 m, 10 m, 13 m, 30 m, 50 m)

CE2402/PT3-x Extension for optical fiber with protection tube for mechanical stress

(3 m, 10 m, customer-specific length up to 50 m)

Cable for IFS2404 sensors

C2404-x Optical fiber with FC/APC and E2000/APC connectors

Fiber core diameter 20 μ m (2 m)

Cables for IFS2405/IFS2406/2407-0,1 sensors

C2401 cable with FC/APC and E2000/APC connectors

C2401-x Optical fiber (3 m, 5 m, 10 m, customer-specific length up to 50 m)

C2401/PT3-x Optical fiber with protection tube for mechanical stress

(3 m, 5 m, 10 m, customer-specific length up to 50 m)

C2401-x(01) Optical fiber core diameter 26 μ m (3 m, 5 m, 15 m) C2401-x(10) Drag-chain suitable optical fiber (3 m, 5 m, 10 m)

C2400 cable with 2x FC/APC connectors

C2400-x Optical fiber (3 m, 5 m, 10 m, customer-specific length up to 50 m)

C2400/PT-x Optical fiber with protection tube for mechanical stress

(3 m, 5 m, 10 m, customer-specific length up to 50 m)

C2400/PT-x-Vac Optical fiber with protection tube suitable for use in vacuum

(3 m, 5 m, 10 m, customer-specific length up to 50 m)

Cable for IFS2407/90-0,3 sensors

C2407-x Optical fiber with DIN connector and E2000/APC (2 m, 5 m)

Vacuum feedthrough

C2402/Vac/KF16 Vacuum feed through with optical fiber, 1 channel, vacuum side FC/APC

non-vacuum side E2000/APC, clamping flange KF 16

C2405/Vac/1/KF16 Vacuum feed through on both sides FC/APC socket, 1 channel,

clamping flange type KF 16

C2405/Vac/1/CF16 Vacuum feed through on both sides FC/APC socket, 1 channel,

flange type CF 16

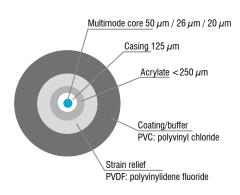
C2405/Vac/6/CF63 Vacuum feed through FC/APC socket, 6 channels,

flange type CF 63

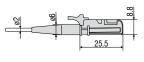
Other accessories

SC2471-x/USB/IND Connector cable IFC2461/71, 3 m, 10 m, 20 m

SC2471-x/IF2008 Connector cable IFC2461/71-IF2008, 3 m, 10 m, 20 m

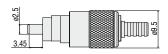

PS2020 Power supply 24 V / 2.5 A

EC2471-3/OE Encoder cable, 3 m

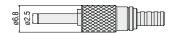

IF2030/PNET Interface module for PROFINET connection
IF2030/ENETIP Interface module for EtherNet/IP connection

Optical fiber

Temperature range: -50 $^{\circ}$ C to 90 $^{\circ}$ C Bending radius: 30/40 mm



E2000/APC Standard connector



FC/APC Standard connector

DIN Connector

Sensors and Systems from Micro-Epsilon

Sensors and systems for displacement, distance and position

Sensors and measurement devices for non-contact temperature measurement

Measuring and inspection systems for metal strips, plastics and rubber

Optical micrometers and fiber optics, measuring and test amplifiers

Color recognition sensors, LED analyzers and inline color spectrometers

3D measurement technology for dimensional testing and surface inspection